A simple proof for Euler's formula

Euler's formula: $$e^{i\theta}=\cos \theta + i \sin \theta$$ Let $f(\theta )=e^{i\theta}$ and $g(\theta )= \cos \theta + i \sin \theta$, considering $i$ as a constant, lets make our first contact with the proof we need. For $\theta = 0$,  we see that $f(0) = g(0) = 1$, but this is not enough for saying that both functions are actually equal. Then, we will just make our first derivative of both functions: $$f'(\theta) = e^{i \theta} \cdot \frac{d \left ( i \theta \right )}{d \theta}=e^{i \theta } \cdot i := i \cdot f(\theta)$$ $$g ' (\theta) = -\sin \theta + i \cos \theta = i^2 \sin \theta + i \cos \theta := i \cdot g(\theta)$$ We got the same differential equation for both functions. This means there is gonna be, at first: one general solution that includes both functions. But considering that the point $P(0,1)$ belongs to $f(\theta)$ and $g(\theta)$ at the same time, the constant that appears in the general solution will disappear. In other words, the function t...

Matriz adjunta

Denominamos matriz adjunta de una matriz $A$, a aquella formada por los cofactores de cada uno de los elementos de A:
$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{pmatrix} ,  $ adj$(A)=\begin{pmatrix}
A_{11} & -A_{12} & A_{13}\\
-A_{21} & A_{22} & -A_{23}\\
A_{31} & -A_{32} & A_{33}
\end{pmatrix}$



¿Pero..., a qué me refiero exactamente con cofactor?. Simple; el cofactor de un elemento $a_{mn}$ es el determinante formado por los elementos de $A$ que no están presentes en la fila $m$, ni en la columna $n$. De esta manera, llegamos a la siguiente conclusión:


Comentarios

Entradas populares de este blog

VALOR ABSOLUTO

POLINOMIO DE TAYLOR

MÉTODO DE NEWTON-RAPHSON