A simple proof for Euler's formula

Euler's formula: $$e^{i\theta}=\cos \theta + i \sin \theta$$ Let $f(\theta )=e^{i\theta}$ and $g(\theta )= \cos \theta + i \sin \theta$, considering $i$ as a constant, lets make our first contact with the proof we need. For $\theta = 0$,  we see that $f(0) = g(0) = 1$, but this is not enough for saying that both functions are actually equal. Then, we will just make our first derivative of both functions: $$f'(\theta) = e^{i \theta} \cdot \frac{d \left ( i \theta \right )}{d \theta}=e^{i \theta } \cdot i := i \cdot f(\theta)$$ $$g ' (\theta) = -\sin \theta + i \cos \theta = i^2 \sin \theta + i \cos \theta := i \cdot g(\theta)$$ We got the same differential equation for both functions. This means there is gonna be, at first: one general solution that includes both functions. But considering that the point $P(0,1)$ belongs to $f(\theta)$ and $g(\theta)$ at the same time, the constant that appears in the general solution will disappear. In other words, the function t...

Conjugado de una expresión

El conjugado de una expresión $z$, se denota como $\bar{z}$, y se obtiene cambiando el signo central de la expresión. Por ejemplo: $z=6-\sqrt{3}$
Para hallar $\bar{z}$, hemos de cambiar el signo central, de manera que:
El cálculo del conjugado, será FUNDAMENTAL para seguir con la racionalización. Por ello, les he dejado tareíta (:v):
Hallar el conjugado de las siguientes expresiones:
· $x-3$
· $\sqrt{2}+\sqrt{-1}$
· $2+3i$

Comentarios

Entradas populares de este blog

VALOR ABSOLUTO

POLINOMIO DE TAYLOR

MÉTODO DE NEWTON-RAPHSON