A simple proof for Euler's formula

Euler's formula: $$e^{i\theta}=\cos \theta + i \sin \theta$$ Let $f(\theta )=e^{i\theta}$ and $g(\theta )= \cos \theta + i \sin \theta$, considering $i$ as a constant, lets make our first contact with the proof we need. For $\theta = 0$,  we see that $f(0) = g(0) = 1$, but this is not enough for saying that both functions are actually equal. Then, we will just make our first derivative of both functions: $$f'(\theta) = e^{i \theta} \cdot \frac{d \left ( i \theta \right )}{d \theta}=e^{i \theta } \cdot i := i \cdot f(\theta)$$ $$g ' (\theta) = -\sin \theta + i \cos \theta = i^2 \sin \theta + i \cos \theta := i \cdot g(\theta)$$ We got the same differential equation for both functions. This means there is gonna be, at first: one general solution that includes both functions. But considering that the point $P(0,1)$ belongs to $f(\theta)$ and $g(\theta)$ at the same time, the constant that appears in the general solution will disappear. In other words, the function t...

Demostración: Cociente (V.A.)

$\large |\frac{a}{b}|=\frac{|a|}{|b|}$
Teniendo en cuenta la propiedad anterior vista ($|x|=\sqrt{x^2}$), haremos la demostración: $$|\frac{a}{b}|=\sqrt{(\frac{a}{b})^2}=\sqrt{\frac{a^2}{b^2}}=\frac{\sqrt{a^2}}{\sqrt{b^2}}=\boldsymbol{\frac{|a|}{|b|}} \tiny \blacksquare $$

Comentarios

Entradas populares de este blog

VALOR ABSOLUTO

POLINOMIO DE TAYLOR

MÉTODO DE NEWTON-RAPHSON