A simple proof for Euler's formula

Euler's formula: $$e^{i\theta}=\cos \theta + i \sin \theta$$ Let $f(\theta )=e^{i\theta}$ and $g(\theta )= \cos \theta + i \sin \theta$, considering $i$ as a constant, lets make our first contact with the proof we need. For $\theta = 0$,  we see that $f(0) = g(0) = 1$, but this is not enough for saying that both functions are actually equal. Then, we will just make our first derivative of both functions: $$f'(\theta) = e^{i \theta} \cdot \frac{d \left ( i \theta \right )}{d \theta}=e^{i \theta } \cdot i := i \cdot f(\theta)$$ $$g ' (\theta) = -\sin \theta + i \cos \theta = i^2 \sin \theta + i \cos \theta := i \cdot g(\theta)$$ We got the same differential equation for both functions. This means there is gonna be, at first: one general solution that includes both functions. But considering that the point $P(0,1)$ belongs to $f(\theta)$ and $g(\theta)$ at the same time, the constant that appears in the general solution will disappear. In other words, the function t...

Demostración: Potenciación

$|a^n|=|a|^n, n \geq 0 $

Teniendo en cuenta la regla que afirma que $|a \cdot b|=|a| \cdot |b|$, llegamos a la siguiente conclusión:
$$|a^n|=|a \cdot a \cdot a...|=|a|\cdot|a|\cdot|a|...=|a|^n$$

Comentarios

Entradas populares de este blog

VALOR ABSOLUTO

POLINOMIO DE TAYLOR

MÉTODO DE NEWTON-RAPHSON